Precision tracking control of a horizontal arm coordinate measuring machine in the presence of dynamic flexibilities
نویسنده
چکیده
One of the major sources that affect measurement accuracy and limit the use of high motion speeds in coordinate measuring machines (CMM) is the position error. In fact, static and dynamic probe errors are more direct factors in measuring machine accuracy, but are not the subject of this research. However the accuracy of acquisition of component position errors using a CMM in motion is also of importance, hence the dynamics of a CMM need to be considered. Therefore, this research aims to model the dynamics of a horizontal arm CMM by considering drive flexibility at joints and evaluates the characteristics of the system for fine motion control purposes. Design of a precision tracking controller (PTC) to perform superior tracking for enhancing the measurement accuracy and the probing speed in providing less inspection time at high motion speeds is carried out. A dynamic model for the CMM is developed including drive flexibilities represented with lumped springs at the joints. Due to the non-collocated nature of the control scheme in the flexible CMM dynamics, a non-minimum phase system is observed in the proposed CMM model. Using the derived CMM model with joint flexibilities, tracking motion control simulations are conducted at different probing speeds for the cases where a PI controller and a feedback PTC are employed. A comparison of the PI controller with the feedback PTC is also performed. Results demonstrate that the effects of joint flexibilities on the contour error and probing speeds are significant and the PI controller is not capable of providing good accuracy during challenging tasks such as corner tracking. However, the simulation results indicated that by using the proposed feedback precision tracking controller, contour errors in corner tracking that are caused by joint flexibilities can be reduced effectively. T. Özel Department of Industrial and Systems Engineering, Rutgers, The State University of New Jersey, 96 Frelinghuysen Road, Piscataway, New Jersey, USA E-mail: [email protected] Tel.: +1-732-4451099 Fax: +1-732-4455467
منابع مشابه
Design and Implementation of a High-Precision Position Controller for Permanent Magnet Synchronous Motor Based on a New Gain Scheduling Approach
The direct drive permanent magnet synchronous motor (DD-PMSM) is a suitable choice for high-precision position control applications. Among various control methods of this motor, the vector control approaches especially the field oriented control has a high-performance in the industrial drives. In this method, the components of stator current are controlled independently and as a result, the tor...
متن کاملAdaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields
Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...
متن کاملTrajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملNonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System
This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006